Maximum Mean Discrepancy

Uri Shaham

January 20, 2025

1 Mean Embedding

1.1 Two Sample tests

Given two samples, $x_1, \ldots, x_n \sim P, y_1, \ldots, y_m \sim Q$ we are interested in the question whether P = Q. In one dimension, we can try methods like Kolmogorov Smirnov¹ which estimates the densities and checks the difference. But this is problematic in high dimensions, due to the curse of dimensionality.

1.2 Mean Embedding

The idea: choose a function class \mathcal{F} and look for a function $f \in \mathcal{F}$ that can distinguish between P and Q through means

$$D(P,Q,\mathcal{F}) = \sup_{f \in \mathcal{F}} \mathbb{E}_{x \in P}[f(x)] - \mathbb{E}_{x \in Q}[f(x)]$$

Definition 1.1 (Universal kernel). A kernel k is called universal if its corresponding RKHS \mathcal{H} is dense in $\mathcal{C}(\mathcal{X})$ (i.e., if for every bounded continuous function on \mathcal{X} , there is a sequence of functions in \mathcal{H} converging to it pointwise.

For example, the RBF kernel is known to be universal.

Theorem 1.2 (Stainwart 2001, Smola et al., 2006). Let \mathcal{H} be a universal RKHS and \mathcal{F} be a unit ball in it, i.e., $\mathcal{F} = \{f \in \mathcal{H} | ||f|| \leq 1\}$. Then $D(P, Q, \mathcal{F}) = 0$ iff P = Q.

Proof. (informal) The direction \Leftarrow is obvious. If $P \neq Q$, there exists a continuous and bounded f, such that $\mathbb{E}_{x \in P}[f(x)] - \mathbb{E}_{x \in Q}[f(x)] = \epsilon > 0$. Then since \mathcal{H} is universal, we can find $f^* \in \mathcal{H}$ such that $\|f - f^*\|_{\infty} < \frac{\epsilon}{2}$. Then

$$\mathbb{E}_{x \in P}[f^{*}(x)] - \mathbb{E}_{x \in Q}[f^{*}(x)] = \mathbb{E}_{x \in P}[f(x)] - \mathbb{E}_{x \in Q}[f(x)] + \mathbb{E}_{x \in P}[f^{*}(x) - f(x)] - \mathbb{E}_{x \in Q}[f^{*}(x) - f(x)]$$

$$\geq \mathbb{E}_{x \in P}[f(x)] - \mathbb{E}_{x \in Q}[f(x)] - 2||f - f^{*}||_{\infty}$$

$$> \epsilon - 2\frac{\epsilon}{2}$$

$$= 0.$$

Finally, we can rescale f to fit into the unit ball.

¹ https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

Let \mathcal{H} be a RKHS with kernel k, and let $f \in \mathcal{H}$. Recall that by the reproducing property, $f(x) = \langle k(\cdot, x), f \rangle$. Then by linearity of the inner product and the fact that $\phi(x)$ is integrable,

$$\mathbb{E}_{x \in P}[f(x)] = \mathbb{E}_{x \in P}[\langle k(\cdot, x), f \rangle] = \langle \mathbb{E}_{x \in P}[k(\cdot, x)], f \rangle.$$

Definition 1.3 (mean embedding). The mean embedding of a distribution P in an RKHS \mathcal{H} with kernel k is $\mu_P := \mathbb{E}_{x \in P}[k(\cdot, x)]$.

Note that similar to the reproducing property that gives $f(x) = \langle k(\cdot, x), f \rangle$, the mean embedding gives $\mathbb{E}_{x \in P}[f(x)] = \langle \mu_P, f \rangle$.

2 Maximum Mean Discrepancy

We are looking to distibution between P and Q. The optimization problem is

$$\sup_{f \in \mathcal{H}, \|f\| \le 1} \mathbb{E}_{x \sim P}[f(x)] - \mathbb{E}_{x \sim P}[f(x)] = \sup_{f \in \mathcal{H}, \|f\|_{\mathcal{H}} \le 1} \langle \mu_P - \mu_Q, f \rangle = \|\mu_P - \mu_Q\|_{\mathcal{H}},$$

where the latter equality holds since the supremum is attained by $\frac{\mu_P - \mu_Q}{\|\mu_P - \mu_Q\|_{\mathcal{H}}}$

Definition 2.1 (MMD). The MMD between two distributions is the distance between their mean embeddings $\text{MMD}^2(P,Q) = \|\mu_P - \mu_Q\|_{\mathcal{H}}^2$.

Theorem 2.2. MMD²(P,Q) = $\mathbb{E}_{x,x'\sim P}[k(x,x')] + \mathbb{E}_{y,y'\sim Q}[k(y,y')] - 2\mathbb{E}_{x\sim P}\mathbb{E}_{y\sim Q}[k(x,y)].$

Proof.

$$\begin{aligned} \text{MMD}^{2}(P,Q) &= \|\mu_{P} - \mu_{Q}\|_{\mathcal{H}}^{2} \\ &= \langle \mu_{P} - \mu_{Q}, \mu_{P} - \mu_{Q} \rangle \\ &= \langle \mu_{P}, \mu_{P} \rangle + \langle \mu_{Q}, \mu_{Q} \rangle - 2 \langle \mu_{P}, \mu_{Q} \rangle \\ &= \mathbb{E}_{x \sim P}[\mu_{P}(x)] + \mathbb{E}_{y \sim Q}[\mu_{Q}(y)] - 2\mathbb{E}_{x \sim P}[\mu_{Q}(x)] \\ &= \mathbb{E}_{x \sim P}[\langle \mu_{P}, k(\cdot, x) \rangle] + \mathbb{E}_{y \sim Q}[\langle \mu_{Q}, k(\cdot, y) \rangle] - 2\mathbb{E}_{x \sim P}[\langle \mu_{Q}, k(\cdot, x) \rangle] \\ &= \mathbb{E}_{x, x' \sim P}[k(x, x')] + \mathbb{E}_{y, y' \sim Q}[k(y, y')] - 2\mathbb{E}_{x \sim P}\mathbb{E}_{y \sim Q}[k(x, y)]. \end{aligned}$$

Г		Т
Ľ		1
-		

2.1 Empirical Estimation of MMD

We can estimate $\mathbb{E}_{x,x'\sim P}[k(x,x')]$ by

$$\frac{1}{n(n-1)}\sum_{i,j=1,i\neq j}^n k(x_i,x_j).$$

This is an unbiased estimation (as average is an unbiased estimator of expectation). This gives the sample MMD, defined as

$$MMD^{2}(X,Y) = \frac{1}{n(n-1)} \sum_{i,j=1, i \neq j}^{n} k(x_{i}, x_{j}) + \frac{1}{m(m-1)} \sum_{i,j=1, i \neq j}^{m} k(y_{i}, y_{j}) - 2\frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} k(x_{i}, y_{j}).$$

We will now use a measure concentration result by Hoeffding 2 to get a convergence rate for the empirical MMD:

²https://en.wikipedia.org/wiki/Hoeffding%27s_inequality

Theorem 2.3 (Hoeffding). Let k be a kernel with |k(x, x')| < r, and let X be a sample of size m drawn from P. Then

$$\Pr\left(\left|\mathbb{E}_{x,x'\sim P} k(x,x') - \frac{1}{m(m-1)} \sum_{i\neq j} k(x_i,x_j)\right| > \epsilon\right) \le 2 \exp\left(-\frac{m\epsilon^2}{r^2}\right).$$

Remark 2.4. For example, with RBF kernel we have r = 1.

This, together with the union bound 3 gives

Corollary 2.5 (MMD convergence). Let X, Y be samples of sizes m_x, m_y respectively, drawn from P, Q. Then

$$\Pr\left(\left|\operatorname{MMD}^{2}(P,Q,\mathcal{F}) - \operatorname{MMD}^{2}(X,Y)\right| > \epsilon\right) > \\\Pr\left(\left|\left|\mathbb{E}_{x,x'\sim P} k(x,x') - \frac{1}{m_{x}(m_{x}-1)} \sum_{i\neq j} k(x_{i},x_{j})\right| > \frac{\epsilon}{3}\right) + \\\Pr\left(\left|\left|\mathbb{E}_{y,y'\sim Q} k(x,x') - \frac{1}{m_{y}(m_{y}-1)} \sum_{i\neq j} k(y_{i},y_{j})\right| > \frac{\epsilon}{3}\right) + \\\Pr\left(\left|\left|\mathbb{E}_{x\sim P,y\sim Q} k(x,y) - \frac{1}{m_{x}m_{y}} \sum_{i,j} k(x_{i},y_{j})\right| > \frac{\epsilon}{3}\right) + \\\leq 6 \exp\left(-\frac{m\epsilon^{2}}{9r^{2}}\right).$$

$$(1)$$

In words, we have a convergence rate exponential in $m = \min\{m_x, m_y\}$, i.e., the larger the samples are, the (exponentially) closer is the empirical MMD to the true MMD.

2.2 Applications

- 1. Generative models: MMD can be used as a differentiable loss term to encourage generated samples to be similar to training samples from a given distribution.
- 2. Statistical hypothesis testing: use MMD as a test statistic. Null hypothesis: P = Q. The distribution under the null can be estimated using permutations (more on this later on in this course).

2.2.1 Hilbert-Schmidt Independence Criterion (HSIC) - MMD for independence

Let P_X, P_Y be marginal distributions of a joint distribution P_{XY} over $\mathcal{X} \times \mathcal{Y}$. Let $\mu_{P_{XY}}, \mu_{P_X}, \mu_{P_Y}$ be the corresponding mean embeddings.

Definition 2.6 (HSIC).

$$\mathrm{HSIC}^2\left(P_{XY}, P_X, P_Y\right) := \mathrm{MMD}^2(P_{XY}, P_X \otimes P_Y)$$

³https://en.wikipedia.org/wiki/Boole%27s_inequality

Let \mathcal{F} be a RKHS of functions on \mathcal{X} with kernel k, and \mathcal{G} be a RKHS of functions on \mathcal{Y} with kernel l. We use as a kernel

$$\kappa((x, y), (x', y') = k(x, x')l(y, y').$$

Proposition 2.7. Prove that κ is a kernel

Proof. Exercise

We get:

$$HSIC^{2}(P_{XY}, P_{X}, P_{Y}) = \mathbb{E}_{(x,y),(x',y')\sim P_{XY}}[\kappa((x,y), (x',y')] \\ + \mathbb{E}_{x,x'\sim P_{X}}[k(x,x')] \mathbb{E}_{y,y'\sim P_{Y}}[l(y,y')] \\ - 2 \mathbb{E}_{(x,y)\sim P_{XY}}[\mathbb{E}_{x\sim P_{X}}[k(x,x')] \mathbb{E}_{y\sim P_{Y}}l[(y,y')]].$$

However, in empirical estimation of HSIC we ancounter an issue, as we typically have only samples (x_i, y_i) from P_{XY} , we don't have samples from $P_X \otimes P_Y$. To tackle this, we estimate $P_X \otimes P_Y$ using samples (x_i, y_j) with $i \neq j$.

HSIC can be used to design independence tests, similar to the MMD usage in two-sample test. In addition, it can be used as a differential objective function for disentanglement models.